organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Benzylamino-2-cyano-*N*-[*N*-(2-fluorophenyl)carbamoyl]-3-(methylsulfanyl)acrylamide

Shihua Zhong, Mingliang Fan, Jianbing Liu* and Bingyu Liu

College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China Correspondence e-mail: hunansdljb@163.com

Received 12 September 2011; accepted 2 November 2011

Key indicators: single-crystal X-ray study; T = 133 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.079; data-to-parameter ratio = 16.3.

In the crystal structure of the title compound, $C_{19}H_{17}FN_4O_2S$, molecules are linked *via* pairs of $N-H\cdots N$ interactions, forming centrosymmetric dimers. Two intramolecular $N-H\cdots O$ hydrogen bonds stabilize the molecular conformation.

Related literature

The title compound was synthesized as a herbicide. For details of the synthesis, see: Wang *et al.* (2004); Senda *et al.* (1972); Xue *et al.* (2002); Liu *et al.* (1998); Zhang *et al.* (2008).

Experimental

Crystal data $C_{19}H_{17}FN_4O_2S$ $M_r = 384.43$

Triclinic, $P\overline{1}$ a = 9.2415 (18) Å

b = 10.047 (2) Å c = 11.0949 (19) Å $\alpha = 73.312 (6)^{\circ}$ $\beta = 66.880 (6)^{\circ}$ $\gamma = 84.295 (7)^{\circ}$ $V = 907.4 (3) \text{ Å}^{3}$	Z = 2 Mo K α radiation $\mu = 0.21 \text{ mm}^{-1}$ T = 133 K $0.48 \times 0.39 \times 0.39 \text{ mm}$
Data collection	
Rigaku AFC10/Saturn724+ diffractometer Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	8644 measured reflections 4089 independent reflections 3137 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$

$T_{\min} =$	0.906,	$\tilde{T}_{\rm max}$	= (.923
Refinem	ent			

2	
$R[F^2 > 2\sigma(F^2)] = 0.035$	H atoms treated by a mixture of
$vR(F^2) = 0.079$	independent and constrained
S = 1.00	refinement
1089 reflections	$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$
251 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdots O1$ $N3 - H3N \cdots O1$ $N2 - H2N \cdots N4^{i}$	0.860 (17) 0.827 (16) 0.858 (15)	1.894 (17) 1.912 (16) 2.229 (16)	2.6024 (15) 2.6012 (16) 3.0710 (17)	138.7 (15) 140.1 (14) 166.8 (14)

Symmetry code: (i) -x, -y + 1, -z + 2.

Data collection: *CrystalClear* (Rigaku, 2008); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

We are grateful to Hunan Normal University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2144).

References

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Liu, H. Y., Sha, Y. L., Lu, R. J., Yang, H. Z. & Lai, L. H. (1998). *Chin. Sci. Bull.* **43**, 397–401.
- Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Senda, S., Hirota, K. & Notani, J. (1972). Chem. Pharm. Bull. 20, 1380–1388. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Wang, Q. M., Li, H., Li, Y. G. & Huang, R. Q. (2004). J. Agric. Food Chem. 52, 1918–1922.
- Xue, Y., Wu, S. Z., Peng, A. D., Yang, Y. & Lu, S. W. (2002). Chin. J. Org. Chem. 22, 529-535.
- Zhang, H. P., Song, B. A., Wang, X. Y., Long, N., Hu, D. Y., Yang, S., Xue, W., Lu, P. & Jin, H. L. (2008). *Chin. J. Org. Chem.* 28, 17–28.

supplementary materials

Acta Cryst. (2011). E67, o3230 [doi:10.1107/S1600536811046125]

3-Benzylamino-2-cyano-N-[N-(2-fluorophenyl)carbamoyl]-3-(methylsulfanyl)acrylamide

S. Zhong, M. Fan, J. Liu and B. Liu

Experimental

The title compound was prepared according to the reported method (Wang *et al.*, 2004; Senda *et al.*, 1972). Crystals of (I) suitable for XRD were obtained by slow evaporation of the acetone solution at 293 K.

Refinement

Positional parameters of all H atoms were calculated geometically and were allowed to ride on the C, O and N atoms to which they are bonded, with C—H = 0.95 to 0.99 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of compound shows displacement ellipsoids drawn at the 50% probability level, all H atoms have been omitted for clarity.

Fig. 2. The crystal packing of the title compound with hydrogen bonds drawn as dashed lines.

3-Benzylamino-2-cyano-N-[N-(2- fluorophenyl)carbamoyl]-3-(methylsulfanyl)acrylamide

Crystal data	
$C_{19}H_{17}FN_4O_2S$	Z = 2
$M_r = 384.43$	F(000) = 400
Triclinic, P1	$D_{\rm x} = 1.407 {\rm ~Mg~m^{-3}}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 9.2415 (18) Å	Cell parameters from 2908 reflections
b = 10.047 (2) Å	$\theta = 2.4 - 29.1^{\circ}$
c = 11.0949 (19) Å	$\mu = 0.21 \text{ mm}^{-1}$
$\alpha = 73.312 \ (6)^{\circ}$	T = 133 K
$\beta = 66.880 \ (6)^{\circ}$	Block, colourless
$\gamma = 84.295 \ (7)^{\circ}$	$0.48 \times 0.39 \times 0.39 \text{ mm}$
$V = 907.4 (3) \text{ Å}^3$	

Data collection

Rigaku AFC10/Saturn724+ diffractometer	4089 independent reflections
Radiation source: Rotating Anode	3137 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.025$
Detector resolution: 28.5714 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
phi and ω scans	$h = -11 \rightarrow 9$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$k = -13 \rightarrow 13$
$T_{\min} = 0.906, \ T_{\max} = 0.923$	$l = -14 \rightarrow 12$
8644 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.079$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.0296P)^2 + 0.119P]$ where $P = (F_o^2 + 2F_c^2)/3$
4089 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
251 parameters	$\Delta \rho_{\text{max}} = 0.32 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-*wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotronia	or	anivalant	isotron	nic dis	nlacomont	naramotors	1 82)
raciionai	aiomic	coorainaies	unu	isoiropi		equivalent	isotrop	ne ais	placement	purumeters	(А	1

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.42534 (5)	0.14869 (4)	0.89857 (4)	0.02801 (11)
F1	0.21687 (11)	0.56288 (9)	0.25643 (8)	0.0357 (2)
01	0.27259 (13)	0.42794 (11)	0.56187 (9)	0.0295 (3)
O2	-0.00916 (14)	0.75621 (12)	0.64645 (10)	0.0363 (3)
N1	0.43164 (14)	0.22266 (12)	0.65160 (11)	0.0222 (3)

N2	0.10887 (14)	0.55174 (12)	0.70402 (12)	0.0228 (3)
N3	0.11794 (15)	0.64303 (13)	0.48270 (12)	0.0239 (3)
N4	0.05563 (16)	0.35724 (14)	1.03305 (12)	0.0341 (3)
C1	0.63303 (18)	-0.12037 (16)	0.63660 (14)	0.0265 (3)
H1	0.7399	-0.0901	0.5950	0.032*
C2	0.5979 (2)	-0.26010 (17)	0.67324 (16)	0.0360 (4)
H2	0.6802	-0.3254	0.6567	0.043*
C3	0.4422 (2)	-0.30499 (17)	0.73435 (16)	0.0394 (4)
Н3	0.4175	-0.4012	0.7596	0.047*
C4	0.3231 (2)	-0.20958 (17)	0.75847 (15)	0.0347 (4)
H4	0.2164	-0.2403	0.8006	0.042*
C5	0.35910 (18)	-0.06872 (16)	0.72123 (14)	0.0259 (3)
Н5	0.2768	-0.0035	0.7382	0.031*
C6	0.51439 (16)	-0.02309 (14)	0.65956 (12)	0.0199 (3)
C7	0.56151 (16)	0.12821 (14)	0.61482 (14)	0.0223 (3)
H7A	0.6365	0.1390	0.6553	0.027*
H7B	0.6175	0.1559	0.5146	0.027*
C8	0.36183 (16)	0.25079 (14)	0.77143 (13)	0.0194 (3)
С9	0.24408 (17)	0.35141 (14)	0.79187 (13)	0.0219 (2)
C10	0.21072 (17)	0.44413 (15)	0.67827 (13)	0.0218 (3)
C11	0.06720 (17)	0.66004 (15)	0.60914 (14)	0.0235 (3)
C12	0.10494 (16)	0.73778 (15)	0.36651 (13)	0.0220 (3)
C13	0.05148 (17)	0.87350 (16)	0.35728 (15)	0.0287 (3)
H13	0.0137	0.9076	0.4355	0.034*
C14	0.05355 (18)	0.95894 (17)	0.23327 (16)	0.0354 (4)
H14	0.0189	1.0520	0.2271	0.042*
C15	0.10502 (19)	0.91076 (18)	0.11951 (16)	0.0378 (4)
H15	0.1044	0.9701	0.0359	0.045*
C16	0.15778 (19)	0.77617 (18)	0.12629 (15)	0.0330 (4)
H16	0.1927	0.7414	0.0485	0.040*
C17	0.15823 (17)	0.69412 (15)	0.24895 (14)	0.0259 (3)
C18	0.4107 (2)	0.25546 (18)	1.00866 (16)	0.0385 (4)
H18A	0.4372	0.3521	0.9544	0.058*
H18B	0.4839	0.2222	1.0548	0.058*
H18C	0.3030	0.2501	1.0767	0.058*
C19	0.14271 (17)	0.35427 (15)	0.92622 (13)	0.0219 (2)
H3N	0.1721 (19)	0.5738 (17)	0.4704 (15)	0.030 (5)*
H2N	0.0681 (19)	0.5644 (16)	0.7839 (16)	0.035 (5)*
H1N	0.394 (2)	0.2677 (18)	0.5923 (17)	0.040 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0371 (2)	0.0269 (2)	0.02340 (19)	0.00577 (17)	-0.01710 (17)	-0.00569 (15)
F1	0.0496 (6)	0.0324 (5)	0.0293 (5)	0.0090 (4)	-0.0187 (4)	-0.0121 (4)
O1	0.0418 (7)	0.0305 (6)	0.0189 (5)	0.0157 (5)	-0.0141 (5)	-0.0122 (4)
O2	0.0447 (7)	0.0339 (7)	0.0331 (6)	0.0205 (6)	-0.0174 (5)	-0.0163 (5)
N1	0.0279 (7)	0.0215 (7)	0.0191 (6)	0.0080 (5)	-0.0107 (5)	-0.0082 (5)

supplementary materials

N2	0.0267 (7)	0.0248 (7)	0.0179 (6)	0.0071 (5)	-0.0086 (5)	-0.0096 (5)
N3	0.0289 (7)	0.0202 (7)	0.0236 (6)	0.0069 (6)	-0.0117 (5)	-0.0073 (5)
N4	0.0354 (8)	0.0392 (8)	0.0242 (7)	0.0105 (7)	-0.0087 (6)	-0.0108 (6)
C1	0.0287 (8)	0.0298 (8)	0.0253 (7)	0.0082 (7)	-0.0129 (7)	-0.0125 (6)
C2	0.0572 (12)	0.0292 (9)	0.0354 (9)	0.0155 (8)	-0.0299 (9)	-0.0166 (7)
C3	0.0736 (14)	0.0225 (9)	0.0310 (8)	-0.0057 (9)	-0.0287 (9)	-0.0059 (7)
C4	0.0418 (10)	0.0380 (10)	0.0239 (8)	-0.0138 (8)	-0.0074 (7)	-0.0103 (7)
C5	0.0257 (8)	0.0303 (8)	0.0232 (7)	0.0001 (7)	-0.0070 (6)	-0.0127 (6)
C6	0.0231 (7)	0.0241 (7)	0.0140 (6)	0.0031 (6)	-0.0079 (6)	-0.0075 (5)
C7	0.0190 (7)	0.0233 (8)	0.0216 (7)	0.0028 (6)	-0.0044 (6)	-0.0074 (6)
C8	0.0229 (7)	0.0182 (7)	0.0180 (6)	-0.0018 (6)	-0.0085 (6)	-0.0046 (5)
C9	0.0264 (5)	0.0216 (5)	0.0189 (5)	0.0030 (4)	-0.0093 (4)	-0.0073 (4)
C10	0.0241 (7)	0.0222 (7)	0.0206 (7)	0.0025 (6)	-0.0083 (6)	-0.0091 (6)
C11	0.0225 (8)	0.0234 (8)	0.0262 (7)	0.0028 (6)	-0.0108 (6)	-0.0078 (6)
C12	0.0182 (7)	0.0225 (8)	0.0243 (7)	-0.0019 (6)	-0.0099 (6)	-0.0016 (6)
C13	0.0227 (8)	0.0274 (8)	0.0339 (8)	0.0034 (6)	-0.0114 (7)	-0.0052 (6)
C14	0.0254 (8)	0.0298 (9)	0.0444 (9)	0.0018 (7)	-0.0160 (8)	0.0030(7)
C15	0.0284 (9)	0.0434 (11)	0.0354 (9)	-0.0044 (8)	-0.0190 (8)	0.0098 (7)
C16	0.0303 (9)	0.0428 (10)	0.0262 (8)	-0.0024 (7)	-0.0146 (7)	-0.0034 (7)
C17	0.0242 (8)	0.0255 (8)	0.0291 (8)	0.0005 (6)	-0.0129 (7)	-0.0051 (6)
C18	0.0453 (10)	0.0519 (11)	0.0315 (8)	0.0081 (9)	-0.0240 (8)	-0.0198 (8)
C19	0.0264 (5)	0.0216 (5)	0.0189 (5)	0.0030 (4)	-0.0093 (4)	-0.0073 (4)

Geometric parameters (Å, °)

S1—C8	1.7567 (13)	C4—H4	0.9500
S1—C18	1.8041 (15)	C5—C6	1.385 (2)
F1—C17	1.3674 (16)	С5—Н5	0.9500
O1—C10	1.2424 (16)	C6—C7	1.5085 (19)
O2—C11	1.2115 (16)	С7—Н7А	0.9900
N1—C8	1.3303 (17)	С7—Н7В	0.9900
N1—C7	1.4556 (17)	C8—C9	1.4060 (18)
N1—H1N	0.860 (17)	C9—C19	1.4223 (19)
N2	1.3785 (17)	C9—C10	1.4577 (18)
N2—C11	1.4204 (17)	C12—C17	1.3847 (19)
N2—H2N	0.858 (15)	C12—C13	1.393 (2)
N3—C11	1.3499 (18)	C13—C14	1.391 (2)
N3—C12	1.4059 (17)	С13—Н13	0.9500
N3—H3N	0.827 (16)	C14—C15	1.374 (2)
N4—C19	1.1488 (17)	C14—H14	0.9500
C1—C2	1.379 (2)	C15—C16	1.382 (2)
C1—C6	1.3903 (19)	С15—Н15	0.9500
С1—Н1	0.9500	C16—C17	1.375 (2)
C2—C3	1.386 (2)	С16—Н16	0.9500
С2—Н2	0.9500	C18—H18A	0.9800
C3—C4	1.382 (2)	C18—H18B	0.9800
С3—Н3	0.9500	C18—H18C	0.9800
C4—C5	1.391 (2)		
C8—S1—C18	106.50 (7)	C9—C8—S1	124.36 (10)

C8—N1—C7	126.66 (12)	C8—C9—C19	120.11 (12)
C8—N1—H1N	113.5 (11)	C8—C9—C10	121.33 (12)
C7—N1—H1N	119.8 (11)	C19—C9—C10	118.19 (12)
C10—N2—C11	127.92 (12)	O1—C10—N2	120.88 (12)
C10—N2—H2N	120.9 (11)	O1—C10—C9	121.44 (12)
C11—N2—H2N	110.9 (11)	N2—C10—C9	117.68 (12)
C11—N3—C12	127.09 (13)	O2—C11—N3	126.13 (13)
C11—N3—H3N	116.0 (11)	O2—C11—N2	119.24 (12)
C12—N3—H3N	116.4 (11)	N3—C11—N2	114.63 (12)
C2—C1—C6	121.00 (16)	C17—C12—C13	117.29 (13)
C2—C1—H1	119.5	C17—C12—N3	116.69 (13)
C6—C1—H1	119.5	C13—C12—N3	125.92 (13)
C1—C2—C3	119.78 (16)	C14—C13—C12	119.87 (14)
C1—C2—H2	120.1	C14—C13—H13	120.1
С3—С2—Н2	120.1	С12—С13—Н13	120.1
C4—C3—C2	119.85 (16)	C15—C14—C13	120.97 (16)
С4—С3—Н3	120.1	C15—C14—H14	119.5
С2—С3—Н3	120.1	C13—C14—H14	119.5
C3—C4—C5	120.16 (16)	C14—C15—C16	120.23 (14)
C3—C4—H4	119.9	С14—С15—Н15	119.9
С5—С4—Н4	119.9	C16—C15—H15	119.9
C6—C5—C4	120.29 (15)	C17—C16—C15	118.02 (15)
С6—С5—Н5	119.9	C17—C16—H16	121.0
C4—C5—H5	119.9	C15—C16—H16	121.0
C5—C6—C1	118.91 (14)	F1—C17—C16	119.01 (13)
C5—C6—C7	122.99 (13)	F1—C17—C12	117.38 (12)
C1—C6—C7	118.09 (13)	C16—C17—C12	123.59 (14)
N1—C7—C6	114.88 (12)	S1—C18—H18A	109.5
N1—C7—H7A	108.5	S1—C18—H18B	109.5
С6—С7—Н7А	108.5	H18A—C18—H18B	109.5
N1—C7—H7B	108.5	S1—C18—H18C	109.5
С6—С7—Н7В	108.5	H18A—C18—H18C	109.5
H7A—C7—H7B	107.5	H18B—C18—H18C	109.5
N1—C8—C9	121.34 (12)	N4—C19—C9	177.14 (16)
N1—C8—S1	114.28 (10)		
C6—C1—C2—C3	-0.2 (2)	C19—C9—C10—O1	-165.04 (14)
C1—C2—C3—C4	-0.1 (2)	C8—C9—C10—N2	-171.45 (13)
C2—C3—C4—C5	0.2 (2)	C19—C9—C10—N2	15.5 (2)
C3—C4—C5—C6	0.1 (2)	C12—N3—C11—O2	6.0 (3)
C4—C5—C6—C1	-0.5 (2)	C12—N3—C11—N2	-174.67 (13)
C4—C5—C6—C7	179.10 (12)	C10-N2-C11-O2	-170.90 (14)
C2—C1—C6—C5	0.52 (19)	C10-N2-C11-N3	9.7 (2)
C2—C1—C6—C7	-179.06 (12)	C11—N3—C12—C17	-176.54 (14)
C8—N1—C7—C6	81.84 (17)	C11—N3—C12—C13	7.2 (2)
C5—C6—C7—N1	4.96 (18)	C17—C12—C13—C14	-0.1 (2)
C1—C6—C7—N1	-175.49 (12)	N3-C12-C13-C14	176.14 (14)
C7—N1—C8—C9	175.63 (13)	C12—C13—C14—C15	1.2 (2)
C7—N1—C8—S1	-6.28 (19)	C13-C14-C15-C16	-0.8 (2)
C18—S1—C8—N1	148.59 (11)	C14—C15—C16—C17	-0.6 (2)

supplementary materials

Symmetry codes: (i) -x, -y+1, -z+2.

C18—S1—C8—C9	-33.39 (15)		C15-C16-C17-F1		-176.93 (14)
N1-C8-C9-C19	163.12 (14)		C15—C16—C17—C12		1.8 (2)
S1—C8—C9—C19	-14.8 (2)		C13—C12—C17—F1		177.34 (13)
N1-C8-C9-C10	-9.8 (2)		N3—C12—C17—F1		0.7 (2)
S1—C8—C9—C10	172.35 (11)		C13—C12—C17—C16		-1.4 (2)
C11-N2-C10-O1	-4.2 (2)		N3-C12-C17-C16		-178.01 (14)
C11—N2—C10—C9	175.25 (14)		C8—C9—C19—N4		-135 (3)
C8—C9—C10—O1	8.0 (2)		C10-C9-C19-N4		38 (3)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1N···O1		0.860 (17)	1.894 (17)	2.6024 (15)	138.7 (15)
N3—H3N…O1		0.827 (16)	1.912 (16)	2.6012 (16)	140.1 (14)
N2—H2N····N4 ⁱ		0.858 (15)	2.229 (16)	3.0710 (17)	166.8 (14)

sup-6

Fig. 1

Fig. 2

